

Florida Solar Energy Center • November 1-4, 2005

Hydrogen Production from Used Lube Oil

Karthikeyan K. Ramasamy, A. T-Raissi

Florida Solar Energy Center

Start Date = January 2004
Planned Completion = November 2006

Florida Solar Energy Center • November 1-4, 2005

Rationale

- Used lube oil is an important local resource.
- Each year, Floridians generate more than 45 million gallons of used lubricating oils.
- Used lube oil is available at about 10 cents per gallon, delivered.
- Hydrogen can be extracted from used lube oil for NASA's use.
- Lube oil contains twice as much as hydrogen as that in biomass.
- ➤ Potential to produce liquid hydrogen without generating any criteria pollutants (CO, SO₂, NOχ, etc.) & with minimal CO₂ & other GHG emission.
- Hydrogen production at costs comparable to SMR.
- Potential near term deployment.

Florida Solar Energy Center • November 1-4, 2005

Research Goals & Objectives

- ➤ Determine the conversion efficiencies, product yield & selectivity during steam reformation of virgin synthetic & used lube oils as a function of reaction parameters *e.g.* pressure, temperature, residence times, etc.
- ➤ Evaluate alkali metal hydroxides as homogeneous catalysts for the steam reformation of lubricating oils – virgin & used.
- Optimize the alkali-catalyzed steam reformation of used oil process in order to maximize yield of hydrogen & minimize formation of coke and other undesirable by-products.
- ➤ Develop an Aspen-PlusTM based process simulation flowsheet for the design & costing of a 1500-8000 lbs/day LH2 production plant utilizing used lubricating oils.

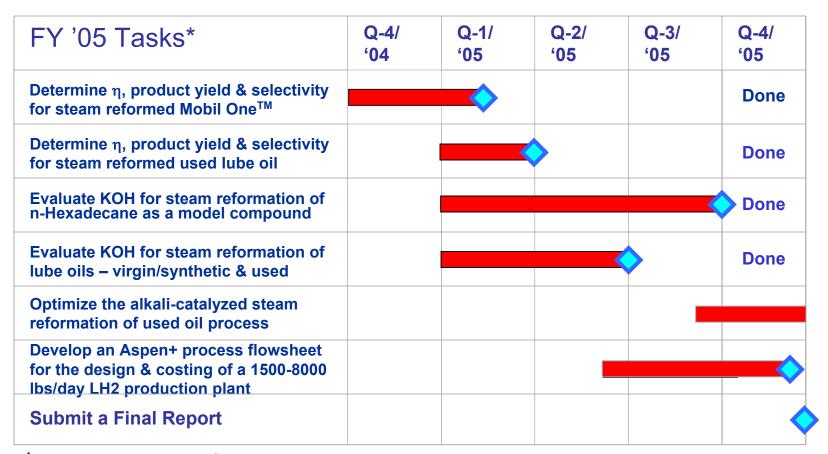
Florida Solar Energy Center • November 1-4, 2005

Relevance to Current State-of-the-Art

➤ Although research related to H₂ production from vegetable oils & diesel range hydrocarbons have been ongoing, none has been reported on the production of hydrogen from used lubricating oils – FSEC's work is first of its kind in this area.

Relevance to NASA

- Allows on site hydrogen production from a locally available feedstock.
- Permits hydrogen production and delivery costs, to NASA, can potentially be lower than that generated via SMR-based processes.
- Eliminates long-distance highway transport of LH2 to NASA-KSC.



Florida Solar Energy Center • November 1-4, 2005

Budget, Schedule & Deliverables

* Budget/FY'05: \$325k

Florida Solar Energy Center • November 1-4, 2005

Anticipated Technology End Use

- This technology is of interest to the petroleum companies interested in hydrogen production from hydrocarbon fuels especially high sulfur ones such as Diesel & jet fuels. We have already been contacted by one petroleum company Chevron Technology Ventures, LLC Houston, Texas, to look at H2 production from high sulfur fuels.
- ➤ Both U.S. DOE & DOD are also interested in this type of R&D for the on-board reformation of logistic fuels to hydrogen gas.

Florida Solar Energy Center • November 1-4, 2005

Composition of Lube Oil

Used lube oil is a complex mixture of low & high molecular weight aliphatic & aromatic hydrocarbons, additives, metals and other compounds.

Compound Class	Formula	Wt% in Oil
Alkyl-Monoaromatics	C ₁₀ H ₁₄ -1, Butyl benzene C ₇ H ₈ , Toluene	4.2 4.2
Cycloalkanes	C ₆ H ₁₂ -1, Cyclohexane C ₆ H ₁₂ -2, Methylcyclopentane C ₈ H ₁₆ -14, n-Propylcyclopentane C ₁₀ H ₂₀ -1, n-Butylcyclohexane	12.0 12.0 12.0 12.0
Diaromatics (Except Naphtalenes)	C ₁₂ H ₁₀ , Biphenyl C ₁₂ H ₈ O, Dibenzofuran C ₁₃ H ₁₀ , Fluorene	2.1 2.1 2.2
Monoaromatics	C ₈ H ₆ S, Benzothiophene	10.8
Naphthalenes	C ₁₀ H ₈ , Naphthalene C ₁₁ H ₁₀ -1, 1-Methylnaphthalene	3.2 3.2
Polynuclear Aromatics	C ₁₈ H ₁₂ , Chrysene C ₁₈ H ₁₂ -D1, Benzanthracene C ₁₄ H ₁₀ -2, Phenanthrene	1.6 1.6 7.4
Straight-chain & branched	C ₉ H ₂₀ -E4, 2,4-Dimethyl-3-ethylpentane	3.4
Additives	C ₇ H ₆ O ₃ , Salicylic acid C ₄ H ₄ O ₃ , Succinic anhydride	3.0 3.0

Element	Weight %
Hydrogen	13.37
Carbon	84.35
Oxygen	2.51
Sulfur	0.22
Nitrogen	<0.5

Florida Solar Energy Center • November 1-4, 2005

Accomplishments & Results

- ➤ Built a bench scale supercritical water hydrocarbon cracking apparatus with hydrogen production capacity of 100 SCCM, Max. temp of 600°C & Max pressure of 26MPa.
- ➤ Built a bench scale hydrocarbon cracking apparatus with hydrogen production capacity of 100 SCCM, Max. temp of 800°C & Max pressure of 10MPa.
- ➤ Demonstrated continuous H₂ production using both virgin synthetic & used lube oil at sub and supercritical conditions.
- ➤ Tested the system with nickel, carbon and alkali catalysts at sub & supercritical conditions.
- ➤ Shown that the steam reforming process that employs a homogeneous catalyst generates H₂ with much higher conversion efficiency & selectivity (& with no catalyst deactivation) than those utilizing heterogeneous catalysts.

Florida Solar Energy Center • November 1-4, 2005

Florida Solar Energy Center • November 1-4, 2005

Accomplishments & Results - FY'04

Catalyst type	Gas production rate after 1 hour, mL/min	Gas production rate after 4 hours, mL/min
Ni (Ni 1-15% on Al ₂ O ₃)	65	36
Ni (Ni 25-45% on Al ₂ O ₃)	71	40
Carbon (Activated Coconut Char)	50	30
Alkali (KOH 0.025M)	102	102

Temperature: 450°C Pressure: 3200 psi

Oil/water feed ratio: 2ml/4ml

Florida Solar Energy Center • November 1-4, 2005

Accomplishments & Results – FY'04

Catalyst type	Performance	
Ni (Ni 1-15% on Al ₂ O ₃)	Low conversion, conversion drops as a result of catalyst deactivation.	
Ni (Ni 25-45% on Al ₂ O ₃)	Low conversion, conversion drops as a result of catalyst deactivation.	
Carbon (Activated Coconut Char)	Low conversion & low selectivity toward hydrogen formation.	
Alkali (KOH 0.025M)	Higher conversion & good selectivity toward hydrogen formation. No catalyst deactivation observed.	

Homogeneous (Alkali) catalyst (KOH) performance was better than the earlier heterogeneous catalysts used (i.e. Ni & carbon) for the steam reformation of lube oil to hydrogen gas.

Florida Solar Energy Center • November 1-4, 2005

Accomplishments & Results – FY'05

Temperature, °C	Pressure, psi	Gas flow rate, mL/min
540	1050	407
535	1500	351
530	2000	275
525	2500	256

n-Hexadecane, C₁₆H₃₄

Florida Solar Energy Center • November 1-4, 2005

Accomplishments & Results – FY'05

Flow Rate, mL/min		Temperature,	Pressure,	Gas flow rate,
Synthetic Oil	Water	°C	atm	mL/min
2	6	710	1	392
2	2	715	1	698
2	1	715	1	896

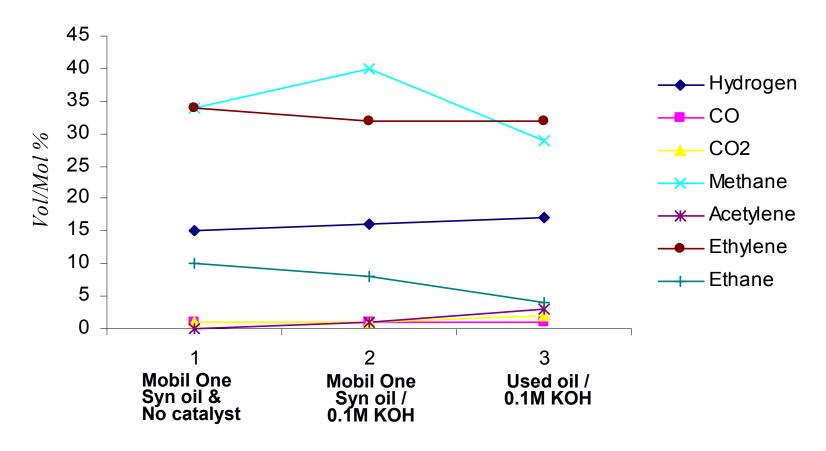
Florida Solar Energy Center • November 1-4, 2005

Accomplishments & Results – FY'05

Oil*	Catalyst	Temperature, °C	Pressure, atm	Gas flow rate, mL/min
Synthetic**	none	715	1	896
Synthetic	none	750	1	923
Synthetic	0.1M KOH	750	1	996
Used	0.1M KOH	755	1	728

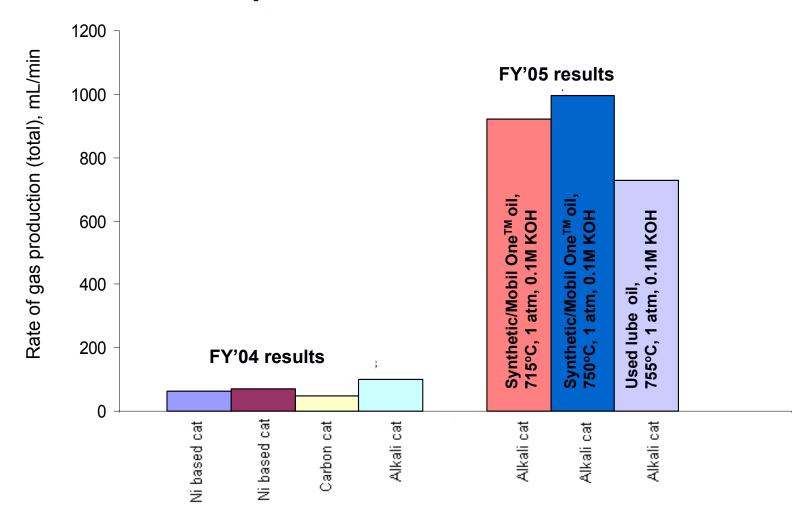
* Oil/water feed ratio: 2ml/1ml

** Virgin Mobil One™ oil



Florida Solar Energy Center • November 1-4, 2005

Accomplishments & Results – FY'05



Florida Solar Energy Center • November 1-4, 2005

Accomplishments & Results To-Date

Florida Solar Energy Center • November 1-4, 2005

Accomplishments & Results - Summary

- ➤ At 750°C & in the presence of 0.1M KOH catalyst, steam reformation of virgin synthetic oil (Mobil OneTM) generated hydrogen that was 66% of that contained in the oil, in addition to lower hydrocarbons such as methane, ethane & ethylene.
- ➤ At 750°C & in the presence of 0.1M KOH catalyst, steam reformation of used lube oil generated hydrogen that was 41% of that contained in the oil, in addition to lower hydrocarbons such as methane, ethane & ethylene.
- ➤ Conversions above are 8-12 times higher than those obtained during previous FY'04 activities.

Florida Solar Energy Center • November 1-4, 2005

Plans for FY'06 Activities

- ➤ Double the yield of hydrogen production via alkali-catalyzed steam reformation of used lube oil to 80% or higher.
- Further improve the process selectivity toward hydrogen.
- ➤ Evaluate other alkali metal hydroxides (NaOH, LiOH) & compounds such as ZrO₂, K₂CO₃, etc. as catalysts for the steam reformation of used lubricating oils.
- Evaluate kerosene range HCs for the production of hydrogen.
- Complete flowsheet analysis & costing of a 1500-8000 lbs/day LH2 production plant utilizing used lubricating oils.

Florida Solar Energy Center • November 1-4, 2005

Future Prospects & Proposal Activity

- ➤ Established a relationship with the Chevron Technology Ventures, LLC Houston, Texas.
- ➤ Submitted a proposal entitled "On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications," for funding to U.S. DOE Florida Hydrogen Initiative, jointly with the Chevron Technology Ventures, LLC Houston, Texas, in July 28th, 2005, funding requested: \$500,000. This proposal is still pending before DOE/FHI.

Florida Solar Energy Center • November 1-4, 2005

Thank You

Questions?